
Expert Systems With Applications 209 (2022) 118345

Available online 4 August 2022
0957-4174/© 2022 Elsevier Ltd. All rights reserved.

Global-local integration for GNN-based anomalous device state detection in
industrial control systems

Shuaiyi L(y)u, Kai Wang, Liren Zhang, Bailing Wang *

Faculty of Computing, Harbin Institute of Technology, China

A R T I C L E I N F O

Keywords:
Global-local integration
Global pooling
Graph neural networks
Anomaly detection
Industrial control systems

A B S T R A C T

Anomaly detection are gaining popularity among the research communities for its essential role in securing
Industrial Control Systems (ICS). Over the decades, diverse approaches have been proposed to profile anomalous
behaviours propagating across the ICS networks. Recent attempts using the Graph Neural Network (GNN)
methodologies have enabled state prediction of a device node via encoding its immediate neighbourhood. Such
an encoding scheme potentially compromises the model’s detection accuracy due to the nodes’ biased attention
towards their local surroundings. To investigate this issue, we present the Global-Local Integration Network
(GLIN) that achieves node-level anomaly detection by merging a node’s local and the network’s global ex-
pressions. It comprises a preprocessor for graph construction and data transformation, an encoder for node
embedding learning, a pooling module producing global representations, an integration module that performs
message fusion, and a decoder for label prediction. We develop and evaluate GLIN with 7 global integration
schemes and train it over 3 message passing mechanisms. We compare its performance against both classical
machine learning and recent deep learning baselines and demonstrate its superiority in terms of multiple popular
metrics. Finally, we provide useful insights on the results and suggest promising future work directions.

1. Introduction

Security issues in ICSs have attracted a considerable amount of
attention over the previous decades (Asghar et al., 2019). Due to their
increasing disclosure to the Internet, these systems have been vulnerable
to the malicious events of all categories across the cyberspace, ranging
from the well-known attacks such as the Denial-of-Service (DoS) and
Device Spoofing, to the subtly crafted zero-day semantic attacks. The
study of anomaly detection for securing industrial control systems calls
for a growing demand due to the ICSs’ significance in ensuring proper
functioning of all critical infrastructures in the society. These systems’
current fragility against hostile interactions has led to a drastic rise in
the proposed strategies over the past few years.

Early contributions in the ICS anomaly detection apply regular data
mining techniques to the individual network flows. They view certain
statistical characteristics as a baseline upon which excessive deviations
are detected as potential anomalies. Periodicity has been widely

exploited for the construction of numerous classic models including the
Deterministic Finite Automata (Goldenberg and Wool, 2013) (Mark-
man et al., 2017) series and the Statechart-based Detectors (Klein-
mann and Wool, 2016). These solutions benefit from their simplicity of
implementation as well as their omittable computation cost. However,
the fact that the statistical properties serve as a signature has led to an
undesired oversensitivity undermining the models’ performance. These
solutions also suffer from a generalization inadequacy for considering
only the visible or inferable properties a flow exhibits. And their
application is restricted within a particular local connection due to their
incapability of incorporating global analysis.

Advances in machine learning have promoted the neural networks to
one of the most popular anomaly detection methodologies investigated
in the literature. Classical techniques integrate the Convolutional
Neural Networks (CNNs) and the Long Short Term Memory modules
(LSTMs) (Dey, 2020) (Abdallah et al., 2021) (Sinha and Manollas, 2020)
as their core building components to perform feature extraction over the

Abbreviations: ICS, Industrial Control System; AAE, Adversarial Autoencoder; CNN, Convolutional Neural Network; DFA, Deterministic Finite Automata; HMI,
Human Machine Inteface; GAN, Generative Adversarial Network; GAT, Graph Attention Network; GCN, Graph Convolutional Network; GLIN, Global-Local Inte-
gration Network; GNN, Graph Neural Network; Graph-SAGE, Graph Sample-and Aggregate; PCA, Principal Component Analysis; PLC, Programmable Logic
Controller; SVM, Support Vector Machine; SWaT, Secure Water Treatment; TWSVM, Twin Support Vector Machine; VAE, Variational Autoencoder.

* Corresponding author.
E-mail address: wbl@hit.edu.cn (B. Wang).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2022.118345
Received 27 April 2022; Received in revised form 19 July 2022; Accepted 30 July 2022

mailto:wbl@hit.edu.cn
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2022.118345
https://doi.org/10.1016/j.eswa.2022.118345
https://doi.org/10.1016/j.eswa.2022.118345
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.118345&domain=pdf

Expert Systems With Applications 209 (2022) 118345

2

systems’ spatial and temporal behaviours. While they surpass the
traditional approaches in performance, most of the proposed frame-
works either perform general analysis over the entire network or fail to
take into account the inter-node relationships when engaged in node-
level state prediction.

Researchers have recently switched focus to the Graph Neural
Networks (GNNs) (Veličković et al., 2017) (Velickovic et al., 2019)
(Kipf and Welling, 2016a), (Kipf and Welling, 2016b) (Hamilton et al.,
2017) for alternative insights due to the GNNs’ powerful ability to
operate on graph-structured data abstracted from a network topology.
Numerous variations have emerged over the past five years, including
the Graph Convolutional Networks (GCNs) (Kipf and Welling,
2016b), the Graph Attentional Networks (GATs) (Veličković et al.,
2017) and the Graph-SAGE (Hamilton, 2017), etc. Despite their success
in improving the performance of node-level state detection by means of
direct neighbourhood aggregation, such a mechanism leads to a poten-
tial drawback that arises from the nodes’ imbalanced awareness of the
overall network architecture. Hence, the resulting embeddings may not
be sufficient enough to serve as an appropriate basis for subsequent tasks
in networks rich in sophisticated global semantics, like the ICSs.

Therefore, we introduce the Global-Local Integration Network
(GLIN) that achieves anomaly detection in ICSs by merging a node’s
local and the network’s global expressions. The proposed framework has
the benefit of producing node embeddings featuring both the node’s
local characteristics as well as its complex universal associativity, which
makes it distinguishable from existing GNN approaches. The conjunc-
tion of local and global properties poses an extensively positive

influence on the model’s performance in anomaly detection. The GLIN
comprises the following components: (a) A Preprocessor that trans-
forms the original data flow into the initial vectors used for message
passing. (b) An Encoder for node embedding learning, which performs
message passing and maps for all nodes their initial vectors to their
corresponding local representations. (c) A Pooling Module that gen-
erates the global expression by incorporating all the nodes’ local rep-
resentations output by the preceding Encoder. (d) An Integration
Module encapsulating the global expression vector into the nodes’ local
embeddings, and (e) A Decoder performing label prediction based upon
the integrated vectors.

We summarize our key contributions as follows:

1) We design and fabricate the GLIN with multiple classic GNN message
passing blocks including GCN, GAT and Graph-SAGE. We create the
graph from an ICS’s typical layered architecture and initialize the
node vectors using the SWaT dataset.

2) We apply and evaluate various pooling and integration schemes on
the embeddings produced by the aforementioned GNN message
passing blocks. We compare the performances of GLIN models with
different configurations against the original GNN model without
global integration, using multiple evaluation metrics.

3) We demonstrate GLIN’s effectiveness in comparison to several state-
of-the-art anomaly detection approaches, and provide further in-
sights and argumentation from various perspectives.

The rest of the paper is structured as below. Section 2 provides an

Fig. 1. General GNN Architecture.

S. L(y)u et al.

Expert Systems With Applications 209 (2022) 118345

3

overview of the literature on ICS anomaly detection. Section 3 defines
the problem and illustrates the general principles of our proposed
framework. Section 4 elaborates on the experimenting procedures and
presents the results. Section 5 discusses the results and Section 6 con-
cludes the paper.

2. Preliminaries and related work

In this section, we provide an overview of GNN preliminaries our
work is based upon, and discuss current literature relevant to ICS
anomaly detection.

2.1. Preliminaries

GNNs are an extensively effective solution to graph related problems
such as node property prediction and link inference, and are hence
explored as a means of anomaly detection in diverse ranges of scenarios.
A GNN model takes in an attributed graph (a graph with node repre-
sentations) and encodes these representations via message passing,
resulting in node embeddings that serve as a basis for subsequent
inference tasks.

A typical GNN framework comprises an encoder incorporating
multiple hidden layers, and a decoder exclusively tailored to specific
tasks. Their general architectures are illustrated in Fig. 1. Each hidden
layer performs a single round of message aggregation over the nodes’
immediate neighbourhood, and the aggregated vector is updated and
possibly shifted to a different dimension before exiting the current block.

GNNs perform message passing on nodes to enrich them with sur-
rounding information. During each round of message passing, all nodes
in the graph update their representation by aggregating messages from
their direct neighbourhood. This representation is a contextual mixture
of a node’s own properties as well as its awareness of surrounding nodes
and edges. Suppose h(k+1)

v is the representation for node v at the (k +

1)-th layer in the encoder, it associates with the k-th layer in the
following manner:

h(k+1)
v ←UPDATE

(
h(k)

v ,AGGREGATE
(
u

∈ N(v),MESSAGE
(
h(k)

v , h(k)
u , e(u, v)

)))
(1)

where N(v) is the set of all nodes directly linked to node v, and e(u, v)
represents the edge connecting nodes u and v.

Among all operators, MESSAGE(.) formulates the message from a
particular neighbour node u by extracting important information from u
and v and the edge connecting them. AGGREGATE(.) gathers the mes-
sages from all v’s neighbours in a certain way, and produces an output
that is subsequently absorbed in the node v’s own embedding in the
UPDATE(.) operator.

The decoder’s function varies among tasks. In node property pre-
diction, for example, the decoder transforms the learnt node embed-
dings into labels representing the level of existence of a particular
feature. In anomaly detection, the labels are usually defined as binary
variables with 0′s denoting normal cases and 1′s otherwise.

2.2. Related work

We categorize the related work into the following perspectives:
traditional ICS anomaly detection methods, machine learning and deep
learning ICS anomaly detection methods.

2.2.1. Traditional methods
Traditional anomaly detection methods proposed for industrial

control networks range from classic statistical analysis to state automata
generation (Goldenberg and Wool, 2013) (Markman et al., 2017) (Yang
et al., 2019) (Zhang et al., 2016) (Ao, 2020) (Kleinmann and Wool,
2016) (Kleinmann et al., 2017). They offer lightweight and interpretable

solutions to a fairly decent variety of existing security relevant problems.
These solutions benefit from multiple application advantages including
implementation and deployment simplicity. However, they suffer from a
rather large and sometimes unacceptable false detection rate for their
incapability of discovering in-depth network characteristics. Details of
some of the typical solutions are described below.

An intrusion detection system is presented (Goldenberg and Wool,
2013) that constructs state-based directed-graph models using an HMI-
PLC channel’s own Deterministic Finite Automation (DFA). It is created
on the assumption that the communication flow between two hosts
within a fixed channel follows a pattern that repeats itself at constant
and well-defined time intervals, thus exhibiting a strong inclination for
periodicity. The model is applied to Modbus/TCP traffic and deeply
inspects each packet in the network flow. Channels, which are identified
with a tuple that comprises host-specific features, are separated and
analyzed independently. Application layer features are extracted to
contribute to the composition of a state symbol in the model, and the
number of states with each period is derived at the end of the DFA
modelling process. The model is analyzed and evaluated on its normal
state rate, re-transmission rate, miss rate as well as its unknown state
rate. The authors claim that the model works perfectly on short and fast
periods, but doesn’t provide the same level of excellence in perfor-
mances on long and slow periods.

Burst transmissions are discovered within individual Modbus/TCP
communication session (Markman et al., 2017). Evidence provided
indicating the presence of semantic messages within each burst, an
open-loop DFA model is developed that describes the states and transi-
tion functions residing in every message. The model uses a threshold
generated with a variance-based method to distinguish packets of
different bursts from each other and, distinct from other DFA repre-
sentations, introduces two boundary states to denote the beginning and
the end of a burst. Experiments are conducted to evaluate the model’s
overall packet recognition rate, accuracy and permissiveness, the final of
which the authors suggest a normalized metric to analyze and assess.
This model surpasses other DFA models when tested on small systems
with bursty channels for its compactness, effectiveness and efficiency.
However, as the authors concedes, it tends to exhibit unacceptably high
False Alarm Rate when applied to large scale systems.

A software-defined security (SDSec) approach (Yang et al., 2019) is
presented to help prevent the propagation of attack impact among field
zones in ICSs. The solution is comprised of a hybrid anomaly detection
module and a multi-level security response module. The hybrid anomaly
detection module extracts critical features from network traffic, and
analyses them so as to obtain an overall security level for the zones being
inspected. The work also develops a multi-level security response
module responsible for attack isolation and mitigation. In this module,
all traffic and state anomalies are simply blocked while data anomalies
are coped with from the perspective of mitigation. The authors inves-
tigate their approach on a typical linear time-invariant system and
propose a global mitigation model, in which a switched Kalman filter is
adopted to compute the compensation signal against the related attack.

An intrusion detection mechanism (Zhang et al., 2016) is created via
exploitation of periodicity and telemetry patterns of network flow
within typical SCADA systems. The scheme requires construction of
multiple modules that operate together to realize detection of adver-
saries in 4 categories, known as reconnaissance, response injection,
command injection and denial of service. The authors claim that the
proposed method bridges the gap that few other algorithms successfully
address by inspecting response injection and attacks of other types
concurrently. Their simulation results indicate that the suggested
mechanism leads to rather low false positive and negative rates and is
more efficient than other methods.

In general, the solutions discussed above are easy to implement and
exhibit outstanding runtime efficiency. Nevertheless, they suffer from an
inadequacy in analyzing a flow’s in-depth properties, and their appli-
cation is constrained within particular localities for the lack of global

S. L(y)u et al.

Expert Systems With Applications 209 (2022) 118345

4

analysis.

2.2.2. Machine and deep learning methods
As the machine learning techniques advance in the past decade, deep

learning based methodologies and application on anomaly detection
have been emerging at a dramatic rate and swarming the research
community. As opposed to the traditional solutions, deep learning
models exploit the network properties via data mining and intensive
feature extraction. Hence they achieve superior performance in terms of
detection accuracy. However, lack of interpretability continues to be one
of their drawbacks despite the recent attempts of model melioration in
various fields of application.

2.2.2.1. Classical machine and deep learning methods. To meliorate the
reliability of data-driven condition monitoring in wind turbine opera-
tions, an automated fault detection approach based on adaptive
threshold and the Twin Support Vector Machine (TWSVM) is introduced
(Dhiman et al., 2021). The anomaly detection problem is defined as a
binary classification task in which samples are labeled via computation
of adaptive threshold of univariate series. Then the TWSVM is applied to
produce dual hyperplanes for state classification. The model is assessed
over the SCADA dataset captured from British window farms and eval-
uated against various classic methods in terms of false negative and false
positive rates. Results suggest the model’s improved reliability over
existing baselines.

Extensions of deep autoencoders are investigated (Zhou and Paf-
fenroth, 2017) that discover high quality non-linear characteristics
while removing outliers simultaneously without access to any clean
training data. They propose “Robust Deep Encoder (RDA)” that can
effectively filter out random noise. Moreover, they offer generalizations
over grouped sparsity norms, differentiating random anomalies from
other types of structured corruption, which leads to superior perfor-
mance in anomaly detection problems.

An adversarial autoencoder (AAE) based approach (Jang et al., 2021)
is proposed for fault detection via nonlinear process monitoring. The
model merges a variational autoencoder (VAE) and a generative
adversarial network (GAN), and is enabled to capture high-dimensional
characteristics in data flows that follow disparate or random statistical
distributions. With a GAN discriminator involved, the generated fea-
tures are deemed to be more reliable and effective when utilized in
anomaly detection. The AAE model is examined over 21 types of faults
over the Tennessee Eastman benchmark and evaluated against multiple
anomaly detection baselines. Its superiority is demonstrated in terms of
fault detection rate, false alarm rate and fault detection delays.

Hybrid intrusion detection systems (Dey, 2020) (Abdallah et al.,
2021) are developed via the incorporation of Convolutional Neural
Network and Long-short Term Memory Network. The resulting models
are effective on capturing spatial and temporal properties of the network
traffic, and are demonstrated feasible on the recognition of zero-day
attacks. It is also proved that the combined model achieves a higher
detection accuracy than each individual model, and that regularization
positively influences CNN’s performance in detecting new intrusions.
Another hybrid model is proposed (Sinha and Manollas, 2020) for
intrusion detection, while it differs from (Dey, 2020) and (Abdallah
et al., 2021) in that it combines CNN with a Bi-directional LSTM. This
model, as the authors claim, excels many state-of-the-art baselines with
a better accuracy and a lower false positive rate.

While these methods outperform the traditional approaches in terms
of functionality, most of the proposed frameworks suffer from their
insufficient interpretability as to how in-depth features are extracted
and utilized to derive desirable results. Moreover, their tuning schemes
tend to be relatively obscure and the tuning effects are also not inferable.

2.2.2.2. Graph neural network methods. The literature review (Wu et al.,
2021) provides useful insights on GNNs for anomaly detection in

Industrial Internet of Things (IIoT). The authors classify existing
anomalies into 3 domains, discuss their showcases, and introduce rele-
vant principles of GNN measures taken to address these issues. They also
investigate the challenges in current models and shed light on potential
future research directions on GNN anomaly detection.

A GNN model detecting node-level anomalies is established (Chen
et al., 2020). The authors conduct experiments on the SWaT data,
analyze the physical workflow and transform the physical stages into a
graph for subsequent training.

A synergistic approach is proposed (Zhao et al., 2021) utilizing data
mining to instruct GNN algorithms on how to effectively aggregate local
information to obtain global patterns. The authors also provide a novel
loss scheme in (Zhao et al., 2020) to assist in the training of GNNs for
anomaly-detectable node representations.

A new training scheme is explored (Wang et al., 2021) via decoupling
the node representation learning and the classification of states in GNN
anomaly detection models. The authors’ preliminary study show that
decoupled training tends to exceed joint training in terms of perfor-
mance, but may deteriorate on condition that the behaviour patterns
and the label semantics become highly inconsistent. Based on this prior
knowledge, they propose Deep Cluster Infomax for node representation
while mitigating the bias triggered by the inconsistency. Results prove
that the model generated from decoupled training outperforms that
from joint training in AUC.

A semi-supervised learning technique (Sankar et al., 2019) is intro-
duced exclusively for the analysis of attributed heterogeneous infor-
mation network. The authors generalize regular GCNs by introducing a
new message aggregation paradigm via meta-graph semantics. They
develop a novel meta-graph convolutional mechanism to extract features
from meta-graph structured neighbourhood in order to capture higher-
order semantic relationships exhibited in the network. They construct
Meta-GNN to perform node classification on real-world data sets,
achieving significant performance gains over state-of-the-art baselines.

These GNN approaches are successful in benefiting node-level state
prediction via direct neighbourhood aggregation. However, this local
nature of the proposed aggregation schemes imposes limitations on a
node’s awareness from a global perspective. Therefore, the resulting
node representations may not be optimal for subsequent tasks in net-
works rich in sophisticated global semantics, like the ICSs.

3. Problem definition and model design

In this section, we formulate the problem to be addressed and
comprehensively introduce the concept and logic of the GLIN.

3.1. Problem statement

One of the aspects differentiating the ICSs from regular networks lies
in the vulnerability of the underlying physical processes vital to the
entire industry. The anomalies in ICSs not only comprises the uncanny
phenomena triggered by the wide range of cyber attacks on the network
level, but may also result from the sneaky attempts in breaching the
regular system operating convention, which potentially leads to chaotic
physical states. This work aims at creating a method that can serve as an
application in an ICS network for global flow inspection, while per-
forming device-level anomaly detection at any time of interest. In this
work, the term anomaly is specifically defined within the scope of
physical processes. Hence only the device readings and timestamps are
taken into consideration when feature extraction is performed during
preprocessing, as discussed in Section 4. That said, the general anomaly
detection problem is defined as below:

Definition 1. Given an industrial field network G(V(t), E(t), X(t), Y(t)),
where V(t), E(t), X(t) and Y(t) correspond to the set of network’s vertices,
edges, node (device) reading features and labels at time t, respectively, find
model M(V(t),E(t),X(t)) = Ŷ(t) such that for ∀t, Ŷ(t) = Y(t).

S. L(y)u et al.

Expert Systems With Applications 209 (2022) 118345

5

In practice, the nature of structural persistency in industrial control
networks prompts the assumption that the graph structure remains
stationary over time. Therefore, we streamline the term G by replacing
V(t) and E(t) with V and E.

3.2. Model design

We present the GLIN framework to address the problem defined
above by integrating local and global representations. The overall ar-
chitecture is displayed in Fig. 2.

3.2.1. Preprocessor
As clarified in Section 3.1, initial feature vectors embody the physical

reading properties of the corresponding devices at some particular
moment. Due to the spatial nature of GNN type models, temporal fea-
tures are usually separately encoded. The Preprocessing Module adopts
the Sliding Window Exponential Weighted Average (SW-EWA) algo-
rithm (see Algorithm 1) to synthesize all values within a series of time
intervals (windows) so that the newly generated data capture the
reading’s most recent temporal characteristics. These intervals are of a
pre-configured size and the values in each interval are mapped
accordingly to the entries of a new vector representation in the following
manner:

X(t) = [X(t, 0),X(t, 1),⋯,X(t,m − 1)]T t ∈ T

X(t, j) =
∑n/m

i=0
w(t, i, j) • x0(t − i − j × (n/m))for∀t > n, 0 ≤ j < m

where X(t) is the new vector produced at time t for a specific device,
m is the length of X(t), X(t, j) is the value of the j-th entry in X(t), n
denotes the window size, T is the set of all the time ticks of interest
and x0(t) represents the original sample at time t. w(t, i, j) regulates
the contribution of the original sample at time t − i − j × (n/m) to the
j-th entry in the new vector. Under the assumption that the
importance of certain context diminishes with time, the weighing
factors in our implementation decay as time backtracks. Therefore,
we employ a set of exponential weights in this step of our pre-
processing procedure.

w(t, i, j) = e−
a
n (i+j×(n/m))

/
∑m− 1

j=0

∑
n
m− 1

i=0
e−

a
n (i+j×(n/m))for∀t > n, 0 ≤ j < m

Note that a is the coefficient that balances the distribution of all
weights in a specific window.

Algorithm 1
Sliding Window Exponential Weighted Average (SW-EWA).

Input: Readings captured at all time ticks for all applicable devices (sensors and
actuators). Input has dimension [#devices,#time ticks]

Output: List of aggregated sample vectors for all devices listall . Output is of dimension
[#devices,#time ticks − n + 1,m]

Ensure:
1: Initialize the window size n and the distribution balancing coefficient a
2: Time index t←n; Sum s←0; List listall←emptylist
3: for all devices:
4: list←emptylist
5: while t ≤ #time ticks:
6: listt←empty list
7: for all j in [0,m − 1] (This loop produces an m-dimensional vector

representation for the current device at time tick t)
8: ej←0

9: for all i in
[
0,

n
m

− 1
]

(Each element in this vector is a fusion of
n
m

consecutive values in the input)
10: compute weight w(t, i, j)

11: ej←ej + w(t, i, j) • x0
(
t − i − j ×

(n
m

))

12: end for
13: listt←listt + ej

14: end for
15: list←list + listt
16: t←t + 1
17: end while
18: listall←listall + list
19:end for
20:return listall

By performing temporal compression, we transform the original reading
sequences into their respective graph node features at different time
ticks, generating the initial representations for the subsequent training
process. Since these features are measured on different scales, we apply
tangent normalization on all the features to circumvent potential
training bias toward the nodes with dominant magnitude.

Xnorm(t) = arctan(X(t))t ∈ T

where Xnorm(t) is the normalized version of X(t).

3.2.2. Encoder
The Preprocessor produces the initial vectors X for message passing.

Each of these vectors comes with a particular device and a specific time
tick t, and is of dimension m. Given the scale of the time tick pool is
tremendously large, in order to leverage our server’s computation
ability in a reasonable fashion, these time ticks are grouped into mini-
batches for further operation. In our implementation, each mini-batch
contains vectors from 64 time ticks.

The graph for message passing consists of subgraphs abstracted from

Fig. 2. General GLIN Architecture.

S. L(y)u et al.

Expert Systems With Applications 209 (2022) 118345

6

the real-time network topology captured at all the time ticks in a single
batch. It is a time-variant element for dynamic networks with frequent
addition or removal of nodes and links. Nevertheless, since little dy-
namics is conventionally accepted in an ICS network, we assume that
our graph remains stationary for all time ticks of interest. Hence, our
graph ends up a replication of a subgraph captured at any particular
time tick and remains stable across all mini-batches. This subgraph can
be defined as a star shaped topology shown in Fig. 3 which is a reflection
of the ICSs’ typical layered architecture. Let As be the adjacency matrix
of this subgraph, then the adjacency matrix for the entire graph A is
produced via the diagonal concatenation as follows:

A←

⎛

⎝
As ⋯ 0
⋮ ⋱ ⋮
0 ⋯ As

⎞

⎠

k×k

where k equals the batch size.
The message passing layer (or hidden layer) is empirically config-

ured with a fixed number of nodes, which in our case is set to 128.
Double hidden layers are implemented and the ReLU function is adopted
for nonlinear activation. Therefore, the number of parameters in the W
matrices corresponding to these layers equals 128m and 1282, respec-
tively. The general embedding learning follows the scheme shown
below:

H(l+1)←σ
(

ÃH(l)W
)

l←0, 1andH(0)←X

where Ã is the normalized version of A and l labels the respective hidden
layer.

We develop and test our model over multiple convolutional schemes
including the GCN, GAT and Graph-SAGE. Details are discussed in
Section 4.

3.2.3. Pooling module
The Pooling Module constitutes part of the core functionality

differentiating the GLIN from existing frameworks. It extracts from in-
dividual nodes the graph’s universal associative characteristics as con-
tent in the global representation, which is combined with the nodes’
local expressions in subsequent Integration Modules. The distilled global
expression contains representative information that characterizes the
whole graph, and is utilized to extensively increase the nodes’ global
awareness, making the node embeddings informative enough to yield a
superior node-level inference accuracy.

Our Pooling Module generates the global expressions for different
time ticks by extracting statistical features over the learnt embeddings
produced by the Encoder. This is a technique frequently used in the

Convolutional Neural Networks (CNNs). Among all the pooling mech-
anisms, max pooling and average (or mean) pooling are the most
popular and thus they are applied to our framework directly. The pe-
ripheral algorithm for the pooling operations is described below (See
Algorithm 2).

Algorithm 2
Batch Global Pooling.

Input: Embedding Matrix H obtained from encoding the given batch B
Output: List of pooling vectors listp

Ensure:
1: listpmax , listpmean←emptylist,emptylist
2: for all time ticks t in B:
3: Ht←matrixstackedfromnodeembeddingsw.r.ttimetickt
4: if max pooling configured:
5: vmax←maxpooling(Ht)

6: listpmax←listpmax + vmax

7: end if
8: if mean pooling configured:
9: vmean←meanpooling(Ht)

10: listpmean←listpmean + vmean

11: end if
12:end for
13:listp←[listpmax , listpmean]

14:return listall

3.2.4. Integration module
The Integration Module enables another unique functionality that

makes the GLIN outstanding and distinguishable. This component en-
capsulates the nodes’ local characteristics with their universal graph-
level awareness, which is accomplished via combination of a node’s
embedding learnt from the Encoder and the global graph expression
produced by the Pooling Module. By applying this integration, all nodes’
knowledge spans over the entire graph, creating expressions that
contain a node’s local representative information as well as its sophis-
ticated associativity with the rest of the graph, thus posing a positive
influence on the model’s performance in node-level state inference.

Similar to global pooling, the integration module also involves two
means of operations, namely vector concatenation (or “cat” for short)
and vector fusion. For concatenation, we append any applicable pooled
global vectors to the rear of a node’s embedding. For example, a “max-
cat” operation combines a node’s own vector representation with the
global expression generated via max pooling, doubling the vector’s
dimension in the meantime. The fusion operation is defined as a
weighted average operation over the local and global embeddings,
which in our case, these vectors are treated equally. For example, a
“mean-max-fusion” operation computes the element-wise average of the
node’s own embedding and the global vectors produced via the mean
and max pooling step. Unlike the Cat. operation, the vector’s dimension
remains unchanged after fusion.

In our implementation, we develop and evaluate 7 pooling-
integration combinations as listed below (TABLE 1).

Fig. 3. Star-shaped Subgraph Topology (Ci refers to the controller labeled i,
and S(A)i − j corresponds to the j-th Sensor (Actuator) directly linked to the
i-th Controller).

Table 1
Investigated GLIN Pooling & Integration Schemes.

No. Pooling Integration

1 Max Cat.
2 Max Fusion
3 Mean Cat.
4 Mean Fusion
5 Mean & Max Cat.
6 Mean & Max Fusion
7 Mean & Max Fusion-Cat

Note that in the final combination, the Fusion operation is executed on the global
vectors before the result is appended to the nodes’ local embeddings via the Cat.
operation.

S. L(y)u et al.

Expert Systems With Applications 209 (2022) 118345

7

Fig. 4. Validation accuracy on GLIN with different message passing layers, applying all global integration schemes.

S. L(y)u et al.

Expert Systems With Applications 209 (2022) 118345

8

3.2.5. Decoder
The Decoder maps the integrated node representation to an

N-dimensional vector ŷ with a fully-connected layer, where N stands for
the number of classes. Then the Logarithm-Softmax function is applied
to compute the logarithmic probability lp(i)(1 ≤ i ≤ N) of all the classes
a specific node is associated with.

lp(i)←log

(
êyi

∑N
j=1êyj

)

1 ≤ i ≤ N

where ŷi refers to the i-th entry in ŷ.
During the training process, instead of employing the binary cross-

entropy loss function, we adopt the NLLLoss to achieve more efficient
coordination with the Logarithm-Softmax Decoder. In this circumstance,
we preserve the model’s ability to scale along with the number of classes
requiring differentiation.

4. Evaluation

In this section, we illustrate the evaluation details and present the
results. All our evaluation processes are run over two sets of data
extracted from the SWaT dataset. One dataset, referred to as the Cross-
Neg Dataset includes the negative samples and the positive ones ob-
tained around the point an anomaly commences. The other one, denoted
as the Pos-Neg Dataset, covers the negative samples as well as the
positive ones captured a while after an anomaly occurs. Each dataset
totally contains 860,160 samples.

4.1. Metrics

With the number of True Positive, False Positive, True Negative
and False Negative samples abbreviated to TP, FP, TN and FN
respectively, our evaluation metrics are listed as follows:

Accuracy: Assesses a model’s ability to classify the samples to their
ground-truth categories.

Accuracy =
TP + TN

TP + FP + TN + FN

Precision: Measures a model’s accuracy over the detected positive
samples. This metric is usually of critical significance in evaluating ICS
auditing and security systems, given the convention that availability
takes priority when it comes to industrial processes.

Precision =
TP

TP + FP

Recall: Evaluates a model’s generality over all positive samples (i.e.
anomalies of all sorts).

Recall =
TP

TP + FN

F1 Score: Compiled metric incorporating Precision and Recall.
Measures a model’s overall effectiveness in detecting positive samples.

F1 =
2 × Precision × Recall

Precision + Recall

4.2. Validation results

2-layered GLINs with multiple message passing schemes are imple-
mented, configured and trained as described in Section 3. Their Vali-
dation “Accuracy-Epoch” curves are plotted in Fig. 4.

Rapid accuracy convergence occurs in most of the scenarios, as
illustrated in Fig. 3. The same applies for other metrics as well, while the
respective figures are omitted.

4.3. Test results

Test results are shown in Table 2 (The term “FMM” and “MM” in the
“Model” column is abbreviation of “Fused Mean-max” and “Mean-max”,
respectively).

Performance discrepancies among different types of global-
integration schemes are conveniently visible in Fig. 5.

4.4. Performance comparison

We evaluate the performances of 3 types of GLIN framework against
the following baselines:

GCN: Neighbours are equally treated during message aggregation,
and both the adjacency matrix and the input vectors are normalized.

GAT: Weights are assigned to every neighbour during message ag-
gregation, and their values are trained along with the parameters among
the hidden layers.

Graph-SAGE: Nodes are sampled for message passing, and the
aggregated neighbour messages are directly concatenated to the self-

Table 2
Test Results for all implemented GLIN frameworks. Each entry encapsulates 2
values separated by ‘|’ corresponding to the 2 datasets defined at the beginning
of Section 4. i.e. the format “Cross-Neg result | Pos-Neg result”.

Model Accuracy(%) Recall(%) Precision(%) F1 Score(%)

GCN-Linear 65.27 |
76.13

59.48 |
50.36

69.55 |
75.87

64.12 |
60.54

GCN-Max Cat. 93.16 |
96.10

93.47 |
93.57

92.76 |
95.60

93.11 |
94.53

GCN-Max Fusion 75.15 |
84.33

70.18 |
67.42

85.06 |
91.26

76.91 |
77.55

GCN-Mean Cat. 86.52 |
85.80

86.50 |
75.89

86.04 |
82.76

86.27 |
78.41

GCN-Mean
Fusion

76.80 |
79.93

76.19 |
58.54

76.13 |
86.84

76.16 |
69.94

GCN-FMM Cat. 87.11 |
92.82

84.70 |
93.55

90.36 |
88.78

87.44 |
90.76

GCN-MM Cat. 87.41 |
91.73

85.14 |
92.48

90.27 |
87.37

87.63 |
89.43

GCN-MM Fusion 86.70 |
79.76

84.17 |
58.02

90.21 |
87.95

87.09 |
69.92

GAT-Linear 66.01 |
77.95

60.31 |
54.17

70.70 |
87.20

65.09 |
66.83

GAT-Max Cat. 89.21 |
81.50

89.37 |
63.85

88.76 |
81.42

89.07 |
71.55

GAT-Max Fusion 90.19 |
93.43

89.95 |
88.47

89.89 |
93.13

89.92 |
90.74

GAT-Mean Cat. 87.49 |91.89 85.85 |
84.79

88.72 |
92.52

87.26 |
88.48

GAT-Mean
Fusion

85.23 |
90.21

83.62 |
81.19

86.03 |
91.42

84.81 |
86.00

GAT-FMM Cat. 91.60 |
94.80

90.66 |
90.19

92.12 |
95.41

91.39 |
92.73

GAT-MM Cat. 91.38 |
81.64

90.13 |
63.18

92.42 |
84.10

91.26 |
72.15

GAT-MM Fusion 88.73 |
91.78

87.60 |
85.02

89.25 |
91.88

88.42 |
88.31

SAGE-Linear 61.75 |
76.99

54.63 |
52.15

68.59 |
85.84

60.82 |
64.88

SAGE-Max Cat. 85.65 |
82.97

83.03 |
67.05

89.18 |
83.07

86.00 |
74.21

SAGE-Max
Fusion

93.05 |
89.47

92.96 |
84.33

92.78 |
86.19

92.87 |
85.25

SAGE-Mean Cat. 91.41 |
86.89

91.41 |
73.16

91.04 |
91.36

91.23 |
81.25

SAGE-Mean
Fusion

85.08 |
80.23

84.13 |
59.19

85.00 |
87.05

84.56 |
70.47

SAGE-FMM Cat. 93.73 |
80.10

93.05 |
58.55

94.09 |
89.62

93.57 |
70.83

SAGE-MM Cat. 85.31 |
84.19

82.38 |
71.69

89.88 |
81.61

85.97 |
76.33

SAGE-MM Fusion 83.29 |
88.81

79.96 |
90.29

88.79 |
87.66

84.15 |
83.82

S. L(y)u et al.

Expert Systems With Applications 209 (2022) 118345

9

Fig. 5. Global-local integration testing performance results.

S. L(y)u et al.

Expert Systems With Applications 209 (2022) 118345

10

representing vectors.
CNN-Local: 1-dimensional convolutional model with 2 Conv. and 1

Pooling layer. Trained and tested on node-level samples. i.e. Each input
sample is a preprocessed vector of length m corresponding to a certain
device at a specific time tick.

CNN-Global: The same network configuration apart from the input
dimension. Each sample in this case is a fused vector of all applicable
devices at a specific time tick. Note that in this situation, metrics are
evaluated on the graph level.

Linear-NN: Double-layer fully-connected network.
Isolated Forest: Unsupervised outlier detector. Featured for its

random forest generation process and runtime efficiency.
One-Class SVM: Unsupervised outlier detector. Novelty detection

discovering rare events. Featured for its ability to cope with extremely
unbalanced data.

PCA: Technique for redundancy elimination. Implemented with
succeeding NN frameworks.

The evaluation results are exhibited in Table 3:

4.5. Runtime comparison

The training and test runtime is illustrated in Fig. 6. It can be inferred

that the additional pooling and integration process produces an extra
time consumption of 45.46–91.28% for training, and 1.25–57.14% for
testing. Nonetheless, the GLINs still outperform the CNN-Global method
which provides the same level of excellence in terms of all the accuracy
metrics evaluated in TABLE 3, by reducing the testing runtime by rates
of 55.56% (GLIN-GCN), 5.56% (GLIN-GAT) and 38.89% (GLIN-GSAGE).
Note that the training and test time consumptions for Isolation Forest
and One-Class SVM exhibit a rather prominent scaling range discrep-
ancy in contrast to all other methods evaluated. Specifically, it takes the
Isolation Forest 2 min and 35 s to train, and 32.7 s to complete the
testing process. As for the One-Class SVM, it takes up to 20 h 27 min and
25 s to train, and testing costs 1 h 49 min and 27 s. The aforementioned
results are not included in Fig. 6 due to this scaling difference.

5. Analysis and discussion on experimental results

This section provides some insights on the results shown in Section 4.

5.1. Result interpretation & baseline comparison

The GLIN converts the temporal sequences obtained from all field
devices associated with the physical process (water treatment as in the
SWaT dataset), and maps them into labels representing the devices’ state
of operation. That provided, this model, once deployed, is capable of
simultaneously differentiating anomalous behavioural patterns with
respect to all devices (controllers, sensors, actuators, etc.) in a real-time
fashion, given that all it needs to determine a device’s state at a specific
time tick t is simply a window of historical values ending at t. With se-
curity gateways or flow auditing systems performing Deep Packet In-
spection on the original packet flow, the required temporal sequences
are easily obtained, and the labels produced by the GLIN can be utilized
for downstream tasks such as network risk analysis and packet filtering.

Regarding the results summarized in section 4, our observations are
highlighted as follows:

The GLINs present a significant gain over their corresponding
GNN prototypes (GCN, GAT and Graph-SAGE). The F1 scores, for
example, are at least 20.37% superior. This enhancement attributes to
the GLINs’ global feature incorporation mechanism, which balances
each node’s overall contribution to the integration of an individual
node’s vector representation. The integrated embeddings take into ac-
count both global and local semantics, featuring a node’s uniqueness

Table 3
Baseline results comparison.

Model Accuracy(%) Recall(%) Precision(%) F1 Score(%)

GLIN-GCN 93.16 | 96.10 93.47 | 93.57 92.76 | 95.60 93.11 | 94.53
GLIN-GAT 91.60 | 94.80 90.66 | 90.19 92.12 | 95.41 91.39 | 92.73
GLIN-SAGE 93.05 | 89.47 92.96 | 84.33 92.78 | 86.19 92.87 | 85.25
PCA-GLIN-

GCN
96.29 |
96.86

96.55 |
94.63

95.97 |
96.68

96.26 |
95.64

GCN 65.27 | 76.13 59.48 | 50.36 69.55 | 75.87 64.12 | 60.54
GAT 66.01 | 77.95 60.31 | 54.17 70.70 | 87.20 65.09 | 66.83
Graph-SAGE 61.75 | 76.99 54.63 | 52.15 68.59 | 85.84 60.82 | 64.88
CNN-Local 63.10 | 65.71 65.81 | 54.59 66.60 | 54.32 66.20 | 54.45
CNN-Global 88.35 | 91.97 88.35 | 87.19 90.55 | 93.11 89.44 | 90.05
Linear-NN 63.38 | 76.60 63.42 | 51.71 63.07 | 75.44 63.25 | 61.36
IForest 58.65 | 59.74 57.48 | 57.40 57.48 | 55.55 57.48 | 56.46
One-Class

SVM
58.21 | 58.14 55.35 | 53.49 55.98 | 52.67 55.66 | 53.08

PCA-NN 64.31 | 76.25 59.83 | 50.60 64.16 | 80.69 61.92 | 62.20
PCA-CNN 62.35 | 76.15 60.11 | 50.38 60.82 | 79.84 60.46 | 61.78
PCA-GCN 69.61 | 81.14 65.52 | 62.91 71.40 | 81.24 68.34 | 70.91

Fig. 6. Training and Test Runtime Evaluation (Note: Test time is appropriately scaled (5×) in order to clarify discrepancies among all models).

S. L(y)u et al.

Expert Systems With Applications 209 (2022) 118345

11

and characterizing its sophisticated association with all distant nodes.
This prompts the effectiveness of GLIN to perform node-level state
prediction for all nodes are knowledgeable enough with respect to both
itself and the global setting it resides in. Furthermore, PCA leads to extra
performance enhancement since it creates more compact and effective
representations via redundancy elimination.

The GLINs’ performances excel several other state-of-the-art
deep learning based classifiers (CNN, Linear-NN), with an F1 gain
of no less than 5.59%. The GLINs are developed on the basis of a
general GNN architecture, and thus inherit most, if not all, of the
properties of a GNN framework. They are able to utilize in the label
prediction process node-level relational properties, which other classi-
fiers such as CNN and Linear-NN usually fail to capture. Note that we
evaluate 2 types of CNN models, one that performs label inference with
nodes’ initial vector representations (CNN-Local). As shown in Table 4,
the results are far from perfect compared to the GLIN. This demonstrates
the boosting effect of a node’s global awareness towards the node-level
property prediction. The other model (CNN-Global) fuses all initial
vectors within a particular time tick, completes prediction with the fused
vectors and ends up with much more desirable results. However, owing
to embedding fusion, representations of all nodes corresponding to the
same time tick become completely indistinguishable. Therefore, CNN-
Global cannot perform label prediction on the same granularity level
as the GLINs.

The GLINs tremendously surpass the unsupervised anomaly
detectors evaluated in this work (Isolation Forest, One-Class SVM)
in terms of all evaluation metrics. These two methods produce
hyperspheres to differentiate rare or abnormal cases from the normal
ones. They treat each feature vector individually, and hence do not
consider the temporal and spatial associativity during the model fitting
process as the GLINs do. Also, the Isolation Forest algorithm operates
upon existing attributes in the vectors, giving rise to performance
deterioration due to a lack of in-depth feature analysis.

5.2. Influence of integrations

The effect of integrations on models’ performance varies among
combinations of different message aggregation techniques and

integration schemes. Overall, the co-existence of the mean and max
pooling operations tends to enhance a model’s classification accuracy
and precision to the greatest extent, while no general patterns are
observed in recall. This suggests the positive influence of global message
complexity on a model’s functionality, which should be elaborated on in
future study.

As for individual pooling schemes, GCN benefits greatly more from
the max pooling method while GAT coordinates better with mean
pooling. This presumably arises from the differences in the adjacency
manipulation executed in the original frameworks. For instance, GCN’s
indiscrimination in message aggregation smoothens the prominent
characters each node holds. Thus an complemental stress on these
characters, which the max pooling operation offers, may offset the
negative smoothing impact attributed to the original GCN. The same
principle may apply to GAT as well, while the situation is simply the
opposite. GAT absorbs a lot of individuality during message passing via
weight assignment, in the meantime impairing the generality a system
exhibits. This can be compensated via the application of mean pooling.

The effect of concatenation and fusion on the original models also
varies. Concatenation leads to a boost in GCN’s performance while
fusion ameliorates GAT’s detection accuracy. This actually corresponds
to the influence of max pooling to a GCN model and the effect of mean
pooling to a GAT framework, respectively. Concatenation preserves all
relevant properties while fusion suppresses the prominence, supple-
menting what is lacking attention in the original methodologies.

5.3. Sensitivity against anomalies

Test results yielded from the Cross-Neg dataset suggest that the
GLIN series are capable of differentiating anomalous activities at a
rather early stage, indicating a much prompter response to potentially
malicious behaviours than their counterpart approaches. Exemplified
with GCN, one can easily infer that the proposed GLIN method excels the
regular GCN in every adopted metric by 20–30%. This all-around
improvement demonstrates the effectiveness of global integration over
peripheral learning, contributing to a higher level of unambiguity in the
definition of normal activities.

Fig. 7. GLIN Deployment.

S. L(y)u et al.

Expert Systems With Applications 209 (2022) 118345

12

5.4. Limitations

The integration process attaches the same global message block to
the embeddings of nodes in the same batch. This shortens the distance
among these representations, in the meantime leading to potential over-
smoothing issues, raising difficulties in distinguishing abnormal devices
in the same time tick. Max pooling, in particular, directly appends the
same global expressions to the end of the original vectors. This drasti-
cally expands the vector’s dimension as well as the similarity among
different nodes to an extent determined by the number of pooling
mechanisms involved. Relevant details should be investigated in future
work.

5.5. Deployment strategies

With security gateways and flow auditing systems equipped in real
ICS networks, the GLIN can be deployed in these security devices and
run as a cooperative function in coordination with existing operations
(See Fig. 7). Specifically, the GLIN can work as a separate plugin looped
by the primary protocol stack whenever necessary, or alternatively, it
can be initiated as a continuous thread, serving as part of the main Deep
Packet Inspection (DPI) process. In the former scenario, received packets
are accumulated and stored before being transmitted to the GLIN upon
call, while the latter requires the GLIN to perform analysis on real-time
data flow.

6. Conclusion

In this work, we investigate the influence of global expressions on the
performance of GNN models dedicated to device anomaly detection in
ICSs. We present the GLIN, a framework that achieves node-level
anomaly detection via global and local message integration. The GLIN
comprises a preprocessor, an encoder, a pooling module, an integration
module, and a decoder. The model is unique in that it achieves node-
level state inference via global incorporation. We evaluate the GLIN
against multiple existing frameworks using various popular metrics and
results have proven GLIN’s superiority over the current baselines, with
an F1 gain of no less than 5.59%. Finally, we present possible application
and deployment schemes of the GLIN in real ICSs. Our future work in-
volves investigating how the GLIN should be implemented in diverse ICS
environment, and studying the possibility of enhancing its runtime ef-
ficiency in order to adapt to real-time applications.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

This paper uses an opensource dataset named SWaT, which is
available on request. Details can be found in https://itrust.sutd.edu.sg.

Acknowledgements

This work is supported by the National Key R&D Program of China
(2020YFB2009502). Dataset is provided by iTrust Centre for Research in
Cyber Security (https://itrust.sutd.edu.sg/dataset/).

References

Abdallah, M., An Le Khac, N., Jahromi, H., & Delia Jurcut, A. (2021, August). A Hybrid
CNN-LSTM Based Approach for Anomaly Detection Systems in SDNs. In The 16th
International Conference on Availability, Reliability and Security (pp. 1-7).

Ao, Q. (2020). An intrusion detection method for industrial control system against
stealthy attack. In In 2020 7th International Conference on Dependable Systems and
Their Applications (DSA) (pp. 157–161). IEEE.

Asghar, M. R., Hu, Q., & Zeadally, S. (2019). Cybersecurity in industrial control systems:
Issues, technologies, and challenges. Computer Networks, 165, Article 106946.

Chen, L., Kuang, X., Xu, A., Yang, Y., & Suo, S. (2020). Anomaly Detection on Time-series
Logs for Industrial Network. In In 2020 3rd International Conference on Smart
BlockChain (SmartBlock) (pp. 81–86). IEEE.

Dey, A. (2020). Deep IDS: A deep learning approach for Intrusion detection based on IDS
2018. In In 2020 2nd International Conference on Sustainable Technologies for Industry
4.0 (STI) (pp. 1–5). IEEE.

Dhiman, H. S., Deb, D., Muyeen, S. M., & Kamwa, I. (2021). Wind turbine gearbox
anomaly detection based on adaptive threshold and twin support vector machines.
IEEE Transactions on Energy Conversion, 36(4), 3462–3469.

Goldenberg, N., & Wool, A. (2013). Accurate modeling of Modbus/TCP for intrusion
detection in SCADA systems. International Journal of Critical Infrastructure Protection,
6(2), 63–75.

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large
graphs. Advances in neural information processing systems. 30.

Jang, K., Hong, S., Kim, M., Na, J., & Moon, I. (2021). Adversarial autoencoder based
feature learning for fault detection in industrial processes. IEEE Transactions on
Industrial Informatics, 18(2), 827–834.

Kipf, T. N., & Welling, M. (2016a). Variational graph auto-encoders. arXiv preprint arXiv:
1611.07308.

Kipf, T. N., & Welling, M. (2016b). Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

Kleinmann, A., Amichay, O., Wool, A., Tenenbaum, D., Bar, O., & Lev, L. (2017). Stealthy
deception attacks against SCADA systems. In Computer Security (pp. 93-109).
Springer, Cham.

Kleinmann, A., & Wool, A. (2016, October). Automatic construction of statechart-based
anomaly detection models for multi-threaded scada via spectral analysis. In
Proceedings of the 2nd ACM Workshop on Cyber-Physical Systems Security and
Privacy (pp. 1-12).

Markman, C., Wool, A., & Cardenas, A. A. (2017, November). A new burst-DFA model for
SCADA anomaly detection. In Proceedings of the 2017 Workshop on Cyber-Physical
Systems Security and PrivaCy (pp. 1-12).

Sankar, A., Zhang, X., & Chang, K. C. C. (2019, August). Meta-GNN: Metagraph neural
network for semi-supervised learning in attributed heterogeneous information
networks. In Proceedings of the 2019 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (pp. 137-144).

Sinha, J., & Manollas, M. (2020, June). Efficient deep CNN-BILSTM model for network
intrusion detection. In Proceedings of the 2020 3rd International Conference on
Artificial Intelligence and Pattern Recognition (pp. 223-231).

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017).
Graph attention networks. arXiv preprint arXiv:1710.10903.

Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., & Hjelm, R. D. (2019). Deep
Graph Infomax. ICLR (Poster), 2(3), 4.

Wang, Y., Zhang, J., Guo, S., Yin, H., Li, C., & Chen, H. (2021, July). Decoupling
representation learning and classification for gnn-based anomaly detection.
In Proceedings of the 44th international ACM SIGIR conference on research and
development in information retrieval (pp. 1239-1248).

Wu, Y., Dai, H. N., & Tang, H. (2021). Graph neural networks for anomaly detection in
industrial internet of things. IEEE Internet of Things Journal.

Yang, J., Zhou, C., Tian, Y. C., & Yang, S. H. (2019). A software-defined security
approach for securing field zones in industrial control systems. IEEE Access, 7,
87002–87016.

Zhang, J., Gan, S., Liu, X., & Zhu, P. (2016). Intrusion detection in SCADA systems by
traffic periodicity and telemetry analysis. In In 2016 IEEE Symposium on Computers
and Communication (ISCC) (pp. 318–325). IEEE.

Zhao, T., Deng, C., Yu, K., Jiang, T., Wang, D., & Jiang, M. (2020, October). Error-
bounded graph anomaly loss for GNNs. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management (pp. 1873-1882).

Zhao, T., Jiang, T., Shah, N., & Jiang, M. (2021). A synergistic approach for graph
anomaly detection with pattern mining and feature learning. IEEE Transactions on
Neural Networks and Learning Systems.

Zhou, C., & Paffenroth, R. C. (2017, August). Anomaly detection with robust deep
autoencoders. In Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining. (pp. 665-674).

S. L(y)u et al.

http://refhub.elsevier.com/S0957-4174(22)01465-8/h0010
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0010
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0010
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0015
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0015
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0020
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0020
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0020
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0025
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0025
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0025
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0030
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0030
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0030
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0035
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0035
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0035
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0045
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0045
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0045
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0090
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0090
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0100
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0100
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0105
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0105
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0105
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0110
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0110
http://refhub.elsevier.com/S0957-4174(22)01465-8/h0110

	Global-local integration for GNN-based anomalous device state detection in industrial control systems
	1 Introduction
	2 Preliminaries and related work
	2.1 Preliminaries
	2.2 Related work
	2.2.1 Traditional methods
	2.2.2 Machine and deep learning methods
	2.2.2.1 Classical machine and deep learning methods
	2.2.2.2 Graph neural network methods

	3 Problem definition and model design
	3.1 Problem statement
	3.2 Model design
	3.2.1 Preprocessor
	3.2.2 Encoder
	3.2.3 Pooling module
	3.2.4 Integration module
	3.2.5 Decoder

	4 Evaluation
	4.1 Metrics
	4.2 Validation results
	4.3 Test results
	4.4 Performance comparison
	4.5 Runtime comparison

	5 Analysis and discussion on experimental results
	5.1 Result interpretation & baseline comparison
	5.2 Influence of integrations
	5.3 Sensitivity against anomalies
	5.4 Limitations
	5.5 Deployment strategies

	6 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

