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A B S T R A C T   

Anomaly detection are gaining popularity among the research communities for its essential role in securing 
Industrial Control Systems (ICS). Over the decades, diverse approaches have been proposed to profile anomalous 
behaviours propagating across the ICS networks. Recent attempts using the Graph Neural Network (GNN) 
methodologies have enabled state prediction of a device node via encoding its immediate neighbourhood. Such 
an encoding scheme potentially compromises the model’s detection accuracy due to the nodes’ biased attention 
towards their local surroundings. To investigate this issue, we present the Global-Local Integration Network 
(GLIN) that achieves node-level anomaly detection by merging a node’s local and the network’s global ex-
pressions. It comprises a preprocessor for graph construction and data transformation, an encoder for node 
embedding learning, a pooling module producing global representations, an integration module that performs 
message fusion, and a decoder for label prediction. We develop and evaluate GLIN with 7 global integration 
schemes and train it over 3 message passing mechanisms. We compare its performance against both classical 
machine learning and recent deep learning baselines and demonstrate its superiority in terms of multiple popular 
metrics. Finally, we provide useful insights on the results and suggest promising future work directions.   

1. Introduction 

Security issues in ICSs have attracted a considerable amount of 
attention over the previous decades (Asghar et al., 2019). Due to their 
increasing disclosure to the Internet, these systems have been vulnerable 
to the malicious events of all categories across the cyberspace, ranging 
from the well-known attacks such as the Denial-of-Service (DoS) and 
Device Spoofing, to the subtly crafted zero-day semantic attacks. The 
study of anomaly detection for securing industrial control systems calls 
for a growing demand due to the ICSs’ significance in ensuring proper 
functioning of all critical infrastructures in the society. These systems’ 
current fragility against hostile interactions has led to a drastic rise in 
the proposed strategies over the past few years. 

Early contributions in the ICS anomaly detection apply regular data 
mining techniques to the individual network flows. They view certain 
statistical characteristics as a baseline upon which excessive deviations 
are detected as potential anomalies. Periodicity has been widely 

exploited for the construction of numerous classic models including the 
Deterministic Finite Automata (Goldenberg and Wool, 2013) (Mark-
man et al., 2017) series and the Statechart-based Detectors (Klein-
mann and Wool, 2016). These solutions benefit from their simplicity of 
implementation as well as their omittable computation cost. However, 
the fact that the statistical properties serve as a signature has led to an 
undesired oversensitivity undermining the models’ performance. These 
solutions also suffer from a generalization inadequacy for considering 
only the visible or inferable properties a flow exhibits. And their 
application is restricted within a particular local connection due to their 
incapability of incorporating global analysis. 

Advances in machine learning have promoted the neural networks to 
one of the most popular anomaly detection methodologies investigated 
in the literature. Classical techniques integrate the Convolutional 
Neural Networks (CNNs) and the Long Short Term Memory modules 
(LSTMs) (Dey, 2020) (Abdallah et al., 2021) (Sinha and Manollas, 2020) 
as their core building components to perform feature extraction over the 
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systems’ spatial and temporal behaviours. While they surpass the 
traditional approaches in performance, most of the proposed frame-
works either perform general analysis over the entire network or fail to 
take into account the inter-node relationships when engaged in node- 
level state prediction. 

Researchers have recently switched focus to the Graph Neural 
Networks (GNNs) (Veličković et al., 2017) (Velickovic et al., 2019) 
(Kipf and Welling, 2016a), (Kipf and Welling, 2016b) (Hamilton et al., 
2017) for alternative insights due to the GNNs’ powerful ability to 
operate on graph-structured data abstracted from a network topology. 
Numerous variations have emerged over the past five years, including 
the Graph Convolutional Networks (GCNs) (Kipf and Welling, 
2016b), the Graph Attentional Networks (GATs) (Veličković et al., 
2017) and the Graph-SAGE (Hamilton, 2017), etc. Despite their success 
in improving the performance of node-level state detection by means of 
direct neighbourhood aggregation, such a mechanism leads to a poten-
tial drawback that arises from the nodes’ imbalanced awareness of the 
overall network architecture. Hence, the resulting embeddings may not 
be sufficient enough to serve as an appropriate basis for subsequent tasks 
in networks rich in sophisticated global semantics, like the ICSs. 

Therefore, we introduce the Global-Local Integration Network 
(GLIN) that achieves anomaly detection in ICSs by merging a node’s 
local and the network’s global expressions. The proposed framework has 
the benefit of producing node embeddings featuring both the node’s 
local characteristics as well as its complex universal associativity, which 
makes it distinguishable from existing GNN approaches. The conjunc-
tion of local and global properties poses an extensively positive 

influence on the model’s performance in anomaly detection. The GLIN 
comprises the following components: (a) A Preprocessor that trans-
forms the original data flow into the initial vectors used for message 
passing. (b) An Encoder for node embedding learning, which performs 
message passing and maps for all nodes their initial vectors to their 
corresponding local representations. (c) A Pooling Module that gen-
erates the global expression by incorporating all the nodes’ local rep-
resentations output by the preceding Encoder. (d) An Integration 
Module encapsulating the global expression vector into the nodes’ local 
embeddings, and (e) A Decoder performing label prediction based upon 
the integrated vectors. 

We summarize our key contributions as follows:  

1) We design and fabricate the GLIN with multiple classic GNN message 
passing blocks including GCN, GAT and Graph-SAGE. We create the 
graph from an ICS’s typical layered architecture and initialize the 
node vectors using the SWaT dataset.  

2) We apply and evaluate various pooling and integration schemes on 
the embeddings produced by the aforementioned GNN message 
passing blocks. We compare the performances of GLIN models with 
different configurations against the original GNN model without 
global integration, using multiple evaluation metrics.  

3) We demonstrate GLIN’s effectiveness in comparison to several state- 
of-the-art anomaly detection approaches, and provide further in-
sights and argumentation from various perspectives. 

The rest of the paper is structured as below. Section 2 provides an 

Fig. 1. General GNN Architecture.  
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overview of the literature on ICS anomaly detection. Section 3 defines 
the problem and illustrates the general principles of our proposed 
framework. Section 4 elaborates on the experimenting procedures and 
presents the results. Section 5 discusses the results and Section 6 con-
cludes the paper. 

2. Preliminaries and related work 

In this section, we provide an overview of GNN preliminaries our 
work is based upon, and discuss current literature relevant to ICS 
anomaly detection. 

2.1. Preliminaries 

GNNs are an extensively effective solution to graph related problems 
such as node property prediction and link inference, and are hence 
explored as a means of anomaly detection in diverse ranges of scenarios. 
A GNN model takes in an attributed graph (a graph with node repre-
sentations) and encodes these representations via message passing, 
resulting in node embeddings that serve as a basis for subsequent 
inference tasks. 

A typical GNN framework comprises an encoder incorporating 
multiple hidden layers, and a decoder exclusively tailored to specific 
tasks. Their general architectures are illustrated in Fig. 1. Each hidden 
layer performs a single round of message aggregation over the nodes’ 
immediate neighbourhood, and the aggregated vector is updated and 
possibly shifted to a different dimension before exiting the current block. 

GNNs perform message passing on nodes to enrich them with sur-
rounding information. During each round of message passing, all nodes 
in the graph update their representation by aggregating messages from 
their direct neighbourhood. This representation is a contextual mixture 
of a node’s own properties as well as its awareness of surrounding nodes 
and edges. Suppose h(k+1)

v is the representation for node v at the (k +

1)-th layer in the encoder, it associates with the k-th layer in the 
following manner: 

h(k+1)
v ←UPDATE

(
h(k)

v ,AGGREGATE
(
u

∈ N(v),MESSAGE
(
h(k)

v , h(k)
u , e(u, v)

)))
(1)  

where N(v) is the set of all nodes directly linked to node v, and e(u, v)
represents the edge connecting nodes u and v. 

Among all operators, MESSAGE(.) formulates the message from a 
particular neighbour node u by extracting important information from u 
and v and the edge connecting them. AGGREGATE(.) gathers the mes-
sages from all v’s neighbours in a certain way, and produces an output 
that is subsequently absorbed in the node v’s own embedding in the 
UPDATE(.) operator. 

The decoder’s function varies among tasks. In node property pre-
diction, for example, the decoder transforms the learnt node embed-
dings into labels representing the level of existence of a particular 
feature. In anomaly detection, the labels are usually defined as binary 
variables with 0′s denoting normal cases and 1′s otherwise. 

2.2. Related work 

We categorize the related work into the following perspectives: 
traditional ICS anomaly detection methods, machine learning and deep 
learning ICS anomaly detection methods. 

2.2.1. Traditional methods 
Traditional anomaly detection methods proposed for industrial 

control networks range from classic statistical analysis to state automata 
generation (Goldenberg and Wool, 2013) (Markman et al., 2017) (Yang 
et al., 2019) (Zhang et al., 2016) (Ao, 2020) (Kleinmann and Wool, 
2016) (Kleinmann et al., 2017). They offer lightweight and interpretable 

solutions to a fairly decent variety of existing security relevant problems. 
These solutions benefit from multiple application advantages including 
implementation and deployment simplicity. However, they suffer from a 
rather large and sometimes unacceptable false detection rate for their 
incapability of discovering in-depth network characteristics. Details of 
some of the typical solutions are described below. 

An intrusion detection system is presented (Goldenberg and Wool, 
2013) that constructs state-based directed-graph models using an HMI- 
PLC channel’s own Deterministic Finite Automation (DFA). It is created 
on the assumption that the communication flow between two hosts 
within a fixed channel follows a pattern that repeats itself at constant 
and well-defined time intervals, thus exhibiting a strong inclination for 
periodicity. The model is applied to Modbus/TCP traffic and deeply 
inspects each packet in the network flow. Channels, which are identified 
with a tuple that comprises host-specific features, are separated and 
analyzed independently. Application layer features are extracted to 
contribute to the composition of a state symbol in the model, and the 
number of states with each period is derived at the end of the DFA 
modelling process. The model is analyzed and evaluated on its normal 
state rate, re-transmission rate, miss rate as well as its unknown state 
rate. The authors claim that the model works perfectly on short and fast 
periods, but doesn’t provide the same level of excellence in perfor-
mances on long and slow periods. 

Burst transmissions are discovered within individual Modbus/TCP 
communication session (Markman et al., 2017). Evidence provided 
indicating the presence of semantic messages within each burst, an 
open-loop DFA model is developed that describes the states and transi-
tion functions residing in every message. The model uses a threshold 
generated with a variance-based method to distinguish packets of 
different bursts from each other and, distinct from other DFA repre-
sentations, introduces two boundary states to denote the beginning and 
the end of a burst. Experiments are conducted to evaluate the model’s 
overall packet recognition rate, accuracy and permissiveness, the final of 
which the authors suggest a normalized metric to analyze and assess. 
This model surpasses other DFA models when tested on small systems 
with bursty channels for its compactness, effectiveness and efficiency. 
However, as the authors concedes, it tends to exhibit unacceptably high 
False Alarm Rate when applied to large scale systems. 

A software-defined security (SDSec) approach (Yang et al., 2019) is 
presented to help prevent the propagation of attack impact among field 
zones in ICSs. The solution is comprised of a hybrid anomaly detection 
module and a multi-level security response module. The hybrid anomaly 
detection module extracts critical features from network traffic, and 
analyses them so as to obtain an overall security level for the zones being 
inspected. The work also develops a multi-level security response 
module responsible for attack isolation and mitigation. In this module, 
all traffic and state anomalies are simply blocked while data anomalies 
are coped with from the perspective of mitigation. The authors inves-
tigate their approach on a typical linear time-invariant system and 
propose a global mitigation model, in which a switched Kalman filter is 
adopted to compute the compensation signal against the related attack. 

An intrusion detection mechanism (Zhang et al., 2016) is created via 
exploitation of periodicity and telemetry patterns of network flow 
within typical SCADA systems. The scheme requires construction of 
multiple modules that operate together to realize detection of adver-
saries in 4 categories, known as reconnaissance, response injection, 
command injection and denial of service. The authors claim that the 
proposed method bridges the gap that few other algorithms successfully 
address by inspecting response injection and attacks of other types 
concurrently. Their simulation results indicate that the suggested 
mechanism leads to rather low false positive and negative rates and is 
more efficient than other methods. 

In general, the solutions discussed above are easy to implement and 
exhibit outstanding runtime efficiency. Nevertheless, they suffer from an 
inadequacy in analyzing a flow’s in-depth properties, and their appli-
cation is constrained within particular localities for the lack of global 
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analysis. 

2.2.2. Machine and deep learning methods 
As the machine learning techniques advance in the past decade, deep 

learning based methodologies and application on anomaly detection 
have been emerging at a dramatic rate and swarming the research 
community. As opposed to the traditional solutions, deep learning 
models exploit the network properties via data mining and intensive 
feature extraction. Hence they achieve superior performance in terms of 
detection accuracy. However, lack of interpretability continues to be one 
of their drawbacks despite the recent attempts of model melioration in 
various fields of application. 

2.2.2.1. Classical machine and deep learning methods. To meliorate the 
reliability of data-driven condition monitoring in wind turbine opera-
tions, an automated fault detection approach based on adaptive 
threshold and the Twin Support Vector Machine (TWSVM) is introduced 
(Dhiman et al., 2021). The anomaly detection problem is defined as a 
binary classification task in which samples are labeled via computation 
of adaptive threshold of univariate series. Then the TWSVM is applied to 
produce dual hyperplanes for state classification. The model is assessed 
over the SCADA dataset captured from British window farms and eval-
uated against various classic methods in terms of false negative and false 
positive rates. Results suggest the model’s improved reliability over 
existing baselines. 

Extensions of deep autoencoders are investigated (Zhou and Paf-
fenroth, 2017) that discover high quality non-linear characteristics 
while removing outliers simultaneously without access to any clean 
training data. They propose “Robust Deep Encoder (RDA)” that can 
effectively filter out random noise. Moreover, they offer generalizations 
over grouped sparsity norms, differentiating random anomalies from 
other types of structured corruption, which leads to superior perfor-
mance in anomaly detection problems. 

An adversarial autoencoder (AAE) based approach (Jang et al., 2021) 
is proposed for fault detection via nonlinear process monitoring. The 
model merges a variational autoencoder (VAE) and a generative 
adversarial network (GAN), and is enabled to capture high-dimensional 
characteristics in data flows that follow disparate or random statistical 
distributions. With a GAN discriminator involved, the generated fea-
tures are deemed to be more reliable and effective when utilized in 
anomaly detection. The AAE model is examined over 21 types of faults 
over the Tennessee Eastman benchmark and evaluated against multiple 
anomaly detection baselines. Its superiority is demonstrated in terms of 
fault detection rate, false alarm rate and fault detection delays. 

Hybrid intrusion detection systems (Dey, 2020) (Abdallah et al., 
2021) are developed via the incorporation of Convolutional Neural 
Network and Long-short Term Memory Network. The resulting models 
are effective on capturing spatial and temporal properties of the network 
traffic, and are demonstrated feasible on the recognition of zero-day 
attacks. It is also proved that the combined model achieves a higher 
detection accuracy than each individual model, and that regularization 
positively influences CNN’s performance in detecting new intrusions. 
Another hybrid model is proposed (Sinha and Manollas, 2020) for 
intrusion detection, while it differs from (Dey, 2020) and (Abdallah 
et al., 2021) in that it combines CNN with a Bi-directional LSTM. This 
model, as the authors claim, excels many state-of-the-art baselines with 
a better accuracy and a lower false positive rate. 

While these methods outperform the traditional approaches in terms 
of functionality, most of the proposed frameworks suffer from their 
insufficient interpretability as to how in-depth features are extracted 
and utilized to derive desirable results. Moreover, their tuning schemes 
tend to be relatively obscure and the tuning effects are also not inferable. 

2.2.2.2. Graph neural network methods. The literature review (Wu et al., 
2021) provides useful insights on GNNs for anomaly detection in 

Industrial Internet of Things (IIoT). The authors classify existing 
anomalies into 3 domains, discuss their showcases, and introduce rele-
vant principles of GNN measures taken to address these issues. They also 
investigate the challenges in current models and shed light on potential 
future research directions on GNN anomaly detection. 

A GNN model detecting node-level anomalies is established (Chen 
et al., 2020). The authors conduct experiments on the SWaT data, 
analyze the physical workflow and transform the physical stages into a 
graph for subsequent training. 

A synergistic approach is proposed (Zhao et al., 2021) utilizing data 
mining to instruct GNN algorithms on how to effectively aggregate local 
information to obtain global patterns. The authors also provide a novel 
loss scheme in (Zhao et al., 2020) to assist in the training of GNNs for 
anomaly-detectable node representations. 

A new training scheme is explored (Wang et al., 2021) via decoupling 
the node representation learning and the classification of states in GNN 
anomaly detection models. The authors’ preliminary study show that 
decoupled training tends to exceed joint training in terms of perfor-
mance, but may deteriorate on condition that the behaviour patterns 
and the label semantics become highly inconsistent. Based on this prior 
knowledge, they propose Deep Cluster Infomax for node representation 
while mitigating the bias triggered by the inconsistency. Results prove 
that the model generated from decoupled training outperforms that 
from joint training in AUC. 

A semi-supervised learning technique (Sankar et al., 2019) is intro-
duced exclusively for the analysis of attributed heterogeneous infor-
mation network. The authors generalize regular GCNs by introducing a 
new message aggregation paradigm via meta-graph semantics. They 
develop a novel meta-graph convolutional mechanism to extract features 
from meta-graph structured neighbourhood in order to capture higher- 
order semantic relationships exhibited in the network. They construct 
Meta-GNN to perform node classification on real-world data sets, 
achieving significant performance gains over state-of-the-art baselines. 

These GNN approaches are successful in benefiting node-level state 
prediction via direct neighbourhood aggregation. However, this local 
nature of the proposed aggregation schemes imposes limitations on a 
node’s awareness from a global perspective. Therefore, the resulting 
node representations may not be optimal for subsequent tasks in net-
works rich in sophisticated global semantics, like the ICSs. 

3. Problem definition and model design 

In this section, we formulate the problem to be addressed and 
comprehensively introduce the concept and logic of the GLIN. 

3.1. Problem statement 

One of the aspects differentiating the ICSs from regular networks lies 
in the vulnerability of the underlying physical processes vital to the 
entire industry. The anomalies in ICSs not only comprises the uncanny 
phenomena triggered by the wide range of cyber attacks on the network 
level, but may also result from the sneaky attempts in breaching the 
regular system operating convention, which potentially leads to chaotic 
physical states. This work aims at creating a method that can serve as an 
application in an ICS network for global flow inspection, while per-
forming device-level anomaly detection at any time of interest. In this 
work, the term anomaly is specifically defined within the scope of 
physical processes. Hence only the device readings and timestamps are 
taken into consideration when feature extraction is performed during 
preprocessing, as discussed in Section 4. That said, the general anomaly 
detection problem is defined as below: 

Definition 1. Given an industrial field network G(V(t), E(t), X(t), Y(t)), 
where V(t), E(t), X(t) and Y(t) correspond to the set of network’s vertices, 
edges, node (device) reading features and labels at time t, respectively, find 
model M(V(t),E(t),X(t)) = Ŷ(t) such that for ∀t, Ŷ(t) = Y(t). 
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In practice, the nature of structural persistency in industrial control 
networks prompts the assumption that the graph structure remains 
stationary over time. Therefore, we streamline the term G by replacing 
V(t) and E(t) with V and E. 

3.2. Model design 

We present the GLIN framework to address the problem defined 
above by integrating local and global representations. The overall ar-
chitecture is displayed in Fig. 2. 

3.2.1. Preprocessor 
As clarified in Section 3.1, initial feature vectors embody the physical 

reading properties of the corresponding devices at some particular 
moment. Due to the spatial nature of GNN type models, temporal fea-
tures are usually separately encoded. The Preprocessing Module adopts 
the Sliding Window Exponential Weighted Average (SW-EWA) algo-
rithm (see Algorithm 1) to synthesize all values within a series of time 
intervals (windows) so that the newly generated data capture the 
reading’s most recent temporal characteristics. These intervals are of a 
pre-configured size and the values in each interval are mapped 
accordingly to the entries of a new vector representation in the following 
manner: 

X(t) = [X(t, 0),X(t, 1),⋯,X(t,m − 1) ]T t ∈ T  

X(t, j) =
∑n/m

i=0
w(t, i, j) • x0(t − i − j × (n/m))for∀t > n, 0 ≤ j < m  

where X(t) is the new vector produced at time t for a specific device, 
m is the length of X(t), X(t, j) is the value of the j-th entry in X(t), n 
denotes the window size, T is the set of all the time ticks of interest 
and x0(t) represents the original sample at time t. w(t, i, j) regulates 
the contribution of the original sample at time t − i − j × (n/m) to the 
j-th entry in the new vector. Under the assumption that the 
importance of certain context diminishes with time, the weighing 
factors in our implementation decay as time backtracks. Therefore, 
we employ a set of exponential weights in this step of our pre-
processing procedure. 

w(t, i, j) = e−
a
n (i+j×(n/m))

/
∑m− 1

j=0

∑
n
m− 1

i=0
e−

a
n (i+j×(n/m))for∀t > n, 0 ≤ j < m  

Note that a is the coefficient that balances the distribution of all 
weights in a specific window. 

Algorithm 1 
Sliding Window Exponential Weighted Average (SW-EWA).  

Input: Readings captured at all time ticks for all applicable devices (sensors and 
actuators). Input has dimension [#devices,#time ticks]

Output: List of aggregated sample vectors for all devices listall . Output is of dimension 
[#devices,#time ticks − n + 1,m]

Ensure: 
1: Initialize the window size n and the distribution balancing coefficient a 
2: Time index t←n; Sum s←0; List listall←emptylist 
3: for all devices: 
4: list←emptylist 
5: while t ≤ #time ticks: 
6: listt←empty list 
7: for all j in [0,m − 1] (This loop produces an m-dimensional vector 

representation for the current device at time tick t) 
8: ej←0 

9: for all i in 
[
0,

n
m

− 1
]

(Each element in this vector is a fusion of 
n
m 

consecutive values in the input) 
10: compute weight w(t, i, j)

11: ej←ej + w(t, i, j) • x0
(
t − i − j ×

( n
m

))

12: end for 
13: listt←listt + ej 

14: end for 
15: list←list + listt 
16: t←t + 1 
17: end while 
18: listall←listall + list 
19:end for 
20:return listall  

By performing temporal compression, we transform the original reading 
sequences into their respective graph node features at different time 
ticks, generating the initial representations for the subsequent training 
process. Since these features are measured on different scales, we apply 
tangent normalization on all the features to circumvent potential 
training bias toward the nodes with dominant magnitude. 

Xnorm(t) = arctan(X(t) )t ∈ T  

where Xnorm(t) is the normalized version of X(t). 

3.2.2. Encoder 
The Preprocessor produces the initial vectors X for message passing. 

Each of these vectors comes with a particular device and a specific time 
tick t, and is of dimension m. Given the scale of the time tick pool is 
tremendously large, in order to leverage our server’s computation 
ability in a reasonable fashion, these time ticks are grouped into mini- 
batches for further operation. In our implementation, each mini-batch 
contains vectors from 64 time ticks. 

The graph for message passing consists of subgraphs abstracted from 

Fig. 2. General GLIN Architecture.  
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the real-time network topology captured at all the time ticks in a single 
batch. It is a time-variant element for dynamic networks with frequent 
addition or removal of nodes and links. Nevertheless, since little dy-
namics is conventionally accepted in an ICS network, we assume that 
our graph remains stationary for all time ticks of interest. Hence, our 
graph ends up a replication of a subgraph captured at any particular 
time tick and remains stable across all mini-batches. This subgraph can 
be defined as a star shaped topology shown in Fig. 3 which is a reflection 
of the ICSs’ typical layered architecture. Let As be the adjacency matrix 
of this subgraph, then the adjacency matrix for the entire graph A is 
produced via the diagonal concatenation as follows: 

A←

⎛

⎝
As ⋯ 0
⋮ ⋱ ⋮
0 ⋯ As

⎞

⎠

k×k  

where k equals the batch size. 
The message passing layer (or hidden layer) is empirically config-

ured with a fixed number of nodes, which in our case is set to 128. 
Double hidden layers are implemented and the ReLU function is adopted 
for nonlinear activation. Therefore, the number of parameters in the W 
matrices corresponding to these layers equals 128m and 1282, respec-
tively. The general embedding learning follows the scheme shown 
below: 

H(l+1)←σ
(

ÃH(l)W
)

l←0, 1andH(0)←X  

where Ã is the normalized version of A and l labels the respective hidden 
layer. 

We develop and test our model over multiple convolutional schemes 
including the GCN, GAT and Graph-SAGE. Details are discussed in 
Section 4. 

3.2.3. Pooling module 
The Pooling Module constitutes part of the core functionality 

differentiating the GLIN from existing frameworks. It extracts from in-
dividual nodes the graph’s universal associative characteristics as con-
tent in the global representation, which is combined with the nodes’ 
local expressions in subsequent Integration Modules. The distilled global 
expression contains representative information that characterizes the 
whole graph, and is utilized to extensively increase the nodes’ global 
awareness, making the node embeddings informative enough to yield a 
superior node-level inference accuracy. 

Our Pooling Module generates the global expressions for different 
time ticks by extracting statistical features over the learnt embeddings 
produced by the Encoder. This is a technique frequently used in the 

Convolutional Neural Networks (CNNs). Among all the pooling mech-
anisms, max pooling and average (or mean) pooling are the most 
popular and thus they are applied to our framework directly. The pe-
ripheral algorithm for the pooling operations is described below (See 
Algorithm 2). 

Algorithm 2 
Batch Global Pooling.  

Input: Embedding Matrix H obtained from encoding the given batch B 
Output: List of pooling vectors listp 

Ensure: 
1: listpmax , listpmean←emptylist,emptylist 
2: for all time ticks t in B: 
3: Ht←matrixstackedfromnodeembeddingsw.r.ttimetickt 
4: if max pooling configured: 
5: vmax←maxpooling(Ht)

6: listpmax←listpmax + vmax 

7: end if 
8: if mean pooling configured: 
9: vmean←meanpooling(Ht)

10: listpmean←listpmean + vmean 

11: end if 
12:end for 
13:listp←[listpmax , listpmean ]

14:return listall  

3.2.4. Integration module 
The Integration Module enables another unique functionality that 

makes the GLIN outstanding and distinguishable. This component en-
capsulates the nodes’ local characteristics with their universal graph- 
level awareness, which is accomplished via combination of a node’s 
embedding learnt from the Encoder and the global graph expression 
produced by the Pooling Module. By applying this integration, all nodes’ 
knowledge spans over the entire graph, creating expressions that 
contain a node’s local representative information as well as its sophis-
ticated associativity with the rest of the graph, thus posing a positive 
influence on the model’s performance in node-level state inference. 

Similar to global pooling, the integration module also involves two 
means of operations, namely vector concatenation (or “cat” for short) 
and vector fusion. For concatenation, we append any applicable pooled 
global vectors to the rear of a node’s embedding. For example, a “max- 
cat” operation combines a node’s own vector representation with the 
global expression generated via max pooling, doubling the vector’s 
dimension in the meantime. The fusion operation is defined as a 
weighted average operation over the local and global embeddings, 
which in our case, these vectors are treated equally. For example, a 
“mean-max-fusion” operation computes the element-wise average of the 
node’s own embedding and the global vectors produced via the mean 
and max pooling step. Unlike the Cat. operation, the vector’s dimension 
remains unchanged after fusion. 

In our implementation, we develop and evaluate 7 pooling- 
integration combinations as listed below (TABLE 1). 

Fig. 3. Star-shaped Subgraph Topology (Ci refers to the controller labeled i, 
and S(A)i − j corresponds to the j-th Sensor (Actuator) directly linked to the 
i-th Controller). 

Table 1 
Investigated GLIN Pooling & Integration Schemes.  

No. Pooling Integration 

1 Max Cat. 
2 Max Fusion 
3 Mean Cat. 
4 Mean Fusion 
5 Mean & Max Cat. 
6 Mean & Max Fusion 
7 Mean & Max Fusion-Cat 

Note that in the final combination, the Fusion operation is executed on the global 
vectors before the result is appended to the nodes’ local embeddings via the Cat. 
operation. 
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Fig. 4. Validation accuracy on GLIN with different message passing layers, applying all global integration schemes.  
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3.2.5. Decoder 
The Decoder maps the integrated node representation to an 

N-dimensional vector ŷ with a fully-connected layer, where N stands for 
the number of classes. Then the Logarithm-Softmax function is applied 
to compute the logarithmic probability lp(i)(1 ≤ i ≤ N) of all the classes 
a specific node is associated with. 

lp(i)←log

(
êyi

∑N
j=1êyj

)

1 ≤ i ≤ N  

where ŷi refers to the i-th entry in ŷ. 
During the training process, instead of employing the binary cross- 

entropy loss function, we adopt the NLLLoss to achieve more efficient 
coordination with the Logarithm-Softmax Decoder. In this circumstance, 
we preserve the model’s ability to scale along with the number of classes 
requiring differentiation. 

4. Evaluation 

In this section, we illustrate the evaluation details and present the 
results. All our evaluation processes are run over two sets of data 
extracted from the SWaT dataset. One dataset, referred to as the Cross- 
Neg Dataset includes the negative samples and the positive ones ob-
tained around the point an anomaly commences. The other one, denoted 
as the Pos-Neg Dataset, covers the negative samples as well as the 
positive ones captured a while after an anomaly occurs. Each dataset 
totally contains 860,160 samples. 

4.1. Metrics 

With the number of True Positive, False Positive, True Negative 
and False Negative samples abbreviated to TP, FP, TN and FN 
respectively, our evaluation metrics are listed as follows: 

Accuracy: Assesses a model’s ability to classify the samples to their 
ground-truth categories. 

Accuracy =
TP + TN

TP + FP + TN + FN 

Precision: Measures a model’s accuracy over the detected positive 
samples. This metric is usually of critical significance in evaluating ICS 
auditing and security systems, given the convention that availability 
takes priority when it comes to industrial processes. 

Precision =
TP

TP + FP 

Recall: Evaluates a model’s generality over all positive samples (i.e. 
anomalies of all sorts). 

Recall =
TP

TP + FN 

F1 Score: Compiled metric incorporating Precision and Recall. 
Measures a model’s overall effectiveness in detecting positive samples. 

F1 =
2 × Precision × Recall

Precision + Recall  

4.2. Validation results 

2-layered GLINs with multiple message passing schemes are imple-
mented, configured and trained as described in Section 3. Their Vali-
dation “Accuracy-Epoch” curves are plotted in Fig. 4. 

Rapid accuracy convergence occurs in most of the scenarios, as 
illustrated in Fig. 3. The same applies for other metrics as well, while the 
respective figures are omitted. 

4.3. Test results 

Test results are shown in Table 2 (The term “FMM” and “MM” in the 
“Model” column is abbreviation of “Fused Mean-max” and “Mean-max”, 
respectively). 

Performance discrepancies among different types of global- 
integration schemes are conveniently visible in Fig. 5. 

4.4. Performance comparison 

We evaluate the performances of 3 types of GLIN framework against 
the following baselines: 

GCN: Neighbours are equally treated during message aggregation, 
and both the adjacency matrix and the input vectors are normalized. 

GAT: Weights are assigned to every neighbour during message ag-
gregation, and their values are trained along with the parameters among 
the hidden layers. 

Graph-SAGE: Nodes are sampled for message passing, and the 
aggregated neighbour messages are directly concatenated to the self- 

Table 2 
Test Results for all implemented GLIN frameworks. Each entry encapsulates 2 
values separated by ‘|’ corresponding to the 2 datasets defined at the beginning 
of Section 4. i.e. the format “Cross-Neg result | Pos-Neg result”.  

Model Accuracy(%) Recall(%) Precision(%) F1 Score(%) 

GCN-Linear 65.27 | 
76.13 

59.48 | 
50.36 

69.55 | 
75.87 

64.12 | 
60.54 

GCN-Max Cat. 93.16 | 
96.10 

93.47 | 
93.57 

92.76 | 
95.60 

93.11 | 
94.53 

GCN-Max Fusion 75.15 | 
84.33 

70.18 | 
67.42 

85.06 | 
91.26 

76.91 | 
77.55 

GCN-Mean Cat. 86.52 | 
85.80 

86.50 | 
75.89 

86.04 | 
82.76 

86.27 | 
78.41 

GCN-Mean 
Fusion 

76.80 | 
79.93 

76.19 | 
58.54 

76.13 | 
86.84 

76.16 | 
69.94 

GCN-FMM Cat. 87.11 | 
92.82 

84.70 | 
93.55 

90.36 | 
88.78 

87.44 | 
90.76 

GCN-MM Cat. 87.41 | 
91.73 

85.14 | 
92.48 

90.27 | 
87.37 

87.63 | 
89.43 

GCN-MM Fusion 86.70 | 
79.76 

84.17 | 
58.02 

90.21 | 
87.95 

87.09 | 
69.92 

GAT-Linear 66.01 | 
77.95 

60.31 | 
54.17 

70.70 | 
87.20 

65.09 | 
66.83 

GAT-Max Cat. 89.21 | 
81.50 

89.37 | 
63.85 

88.76 | 
81.42 

89.07 | 
71.55 

GAT-Max Fusion 90.19 | 
93.43 

89.95 | 
88.47 

89.89 | 
93.13 

89.92 | 
90.74 

GAT-Mean Cat. 87.49 |91.89 85.85 | 
84.79 

88.72 | 
92.52 

87.26 | 
88.48 

GAT-Mean 
Fusion 

85.23 | 
90.21 

83.62 | 
81.19 

86.03 | 
91.42 

84.81 | 
86.00 

GAT-FMM Cat. 91.60 | 
94.80 

90.66 | 
90.19 

92.12 | 
95.41 

91.39 | 
92.73 

GAT-MM Cat. 91.38 | 
81.64 

90.13 | 
63.18 

92.42 | 
84.10 

91.26 | 
72.15 

GAT-MM Fusion 88.73 | 
91.78 

87.60 | 
85.02 

89.25 | 
91.88 

88.42 | 
88.31 

SAGE-Linear 61.75 | 
76.99 

54.63 | 
52.15 

68.59 | 
85.84 

60.82 | 
64.88 

SAGE-Max Cat. 85.65 | 
82.97 

83.03 | 
67.05 

89.18 | 
83.07 

86.00 | 
74.21 

SAGE-Max 
Fusion 

93.05 | 
89.47 

92.96 | 
84.33 

92.78 | 
86.19 

92.87 | 
85.25 

SAGE-Mean Cat. 91.41 | 
86.89 

91.41 | 
73.16 

91.04 | 
91.36 

91.23 | 
81.25 

SAGE-Mean 
Fusion 

85.08 | 
80.23 

84.13 | 
59.19 

85.00 | 
87.05 

84.56 | 
70.47 

SAGE-FMM Cat. 93.73 | 
80.10 

93.05 | 
58.55 

94.09 | 
89.62 

93.57 | 
70.83 

SAGE-MM Cat. 85.31 | 
84.19 

82.38 | 
71.69 

89.88 | 
81.61 

85.97 | 
76.33 

SAGE-MM Fusion 83.29 | 
88.81 

79.96 | 
90.29 

88.79 | 
87.66 

84.15 | 
83.82  
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Fig. 5. Global-local integration testing performance results.  
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representing vectors. 
CNN-Local: 1-dimensional convolutional model with 2 Conv. and 1 

Pooling layer. Trained and tested on node-level samples. i.e. Each input 
sample is a preprocessed vector of length m corresponding to a certain 
device at a specific time tick. 

CNN-Global: The same network configuration apart from the input 
dimension. Each sample in this case is a fused vector of all applicable 
devices at a specific time tick. Note that in this situation, metrics are 
evaluated on the graph level. 

Linear-NN: Double-layer fully-connected network. 
Isolated Forest: Unsupervised outlier detector. Featured for its 

random forest generation process and runtime efficiency. 
One-Class SVM: Unsupervised outlier detector. Novelty detection 

discovering rare events. Featured for its ability to cope with extremely 
unbalanced data. 

PCA: Technique for redundancy elimination. Implemented with 
succeeding NN frameworks. 

The evaluation results are exhibited in Table 3: 

4.5. Runtime comparison 

The training and test runtime is illustrated in Fig. 6. It can be inferred 

that the additional pooling and integration process produces an extra 
time consumption of 45.46–91.28% for training, and 1.25–57.14% for 
testing. Nonetheless, the GLINs still outperform the CNN-Global method 
which provides the same level of excellence in terms of all the accuracy 
metrics evaluated in TABLE 3, by reducing the testing runtime by rates 
of 55.56% (GLIN-GCN), 5.56% (GLIN-GAT) and 38.89% (GLIN-GSAGE). 
Note that the training and test time consumptions for Isolation Forest 
and One-Class SVM exhibit a rather prominent scaling range discrep-
ancy in contrast to all other methods evaluated. Specifically, it takes the 
Isolation Forest 2 min and 35 s to train, and 32.7 s to complete the 
testing process. As for the One-Class SVM, it takes up to 20 h 27 min and 
25 s to train, and testing costs 1 h 49 min and 27 s. The aforementioned 
results are not included in Fig. 6 due to this scaling difference. 

5. Analysis and discussion on experimental results 

This section provides some insights on the results shown in Section 4. 

5.1. Result interpretation & baseline comparison 

The GLIN converts the temporal sequences obtained from all field 
devices associated with the physical process (water treatment as in the 
SWaT dataset), and maps them into labels representing the devices’ state 
of operation. That provided, this model, once deployed, is capable of 
simultaneously differentiating anomalous behavioural patterns with 
respect to all devices (controllers, sensors, actuators, etc.) in a real-time 
fashion, given that all it needs to determine a device’s state at a specific 
time tick t is simply a window of historical values ending at t. With se-
curity gateways or flow auditing systems performing Deep Packet In-
spection on the original packet flow, the required temporal sequences 
are easily obtained, and the labels produced by the GLIN can be utilized 
for downstream tasks such as network risk analysis and packet filtering. 

Regarding the results summarized in section 4, our observations are 
highlighted as follows: 

The GLINs present a significant gain over their corresponding 
GNN prototypes (GCN, GAT and Graph-SAGE). The F1 scores, for 
example, are at least 20.37% superior. This enhancement attributes to 
the GLINs’ global feature incorporation mechanism, which balances 
each node’s overall contribution to the integration of an individual 
node’s vector representation. The integrated embeddings take into ac-
count both global and local semantics, featuring a node’s uniqueness 

Table 3 
Baseline results comparison.  

Model Accuracy(%) Recall(%) Precision(%) F1 Score(%) 

GLIN-GCN 93.16 | 96.10 93.47 | 93.57 92.76 | 95.60 93.11 | 94.53 
GLIN-GAT 91.60 | 94.80 90.66 | 90.19 92.12 | 95.41 91.39 | 92.73 
GLIN-SAGE 93.05 | 89.47 92.96 | 84.33 92.78 | 86.19 92.87 | 85.25 
PCA-GLIN- 

GCN 
96.29 | 
96.86 

96.55 | 
94.63 

95.97 | 
96.68 

96.26 | 
95.64 

GCN 65.27 | 76.13 59.48 | 50.36 69.55 | 75.87 64.12 | 60.54 
GAT 66.01 | 77.95 60.31 | 54.17 70.70 | 87.20 65.09 | 66.83 
Graph-SAGE 61.75 | 76.99 54.63 | 52.15 68.59 | 85.84 60.82 | 64.88 
CNN-Local 63.10 | 65.71 65.81 | 54.59 66.60 | 54.32 66.20 | 54.45 
CNN-Global 88.35 | 91.97 88.35 | 87.19 90.55 | 93.11 89.44 | 90.05 
Linear-NN 63.38 | 76.60 63.42 | 51.71 63.07 | 75.44 63.25 | 61.36 
IForest 58.65 | 59.74 57.48 | 57.40 57.48 | 55.55 57.48 | 56.46 
One-Class 

SVM 
58.21 | 58.14 55.35 | 53.49 55.98 | 52.67 55.66 | 53.08 

PCA-NN 64.31 | 76.25 59.83 | 50.60 64.16 | 80.69 61.92 | 62.20 
PCA-CNN 62.35 | 76.15 60.11 | 50.38 60.82 | 79.84 60.46 | 61.78 
PCA-GCN 69.61 | 81.14 65.52 | 62.91 71.40 | 81.24 68.34 | 70.91  

Fig. 6. Training and Test Runtime Evaluation (Note: Test time is appropriately scaled (5× ) in order to clarify discrepancies among all models).  
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and characterizing its sophisticated association with all distant nodes. 
This prompts the effectiveness of GLIN to perform node-level state 
prediction for all nodes are knowledgeable enough with respect to both 
itself and the global setting it resides in. Furthermore, PCA leads to extra 
performance enhancement since it creates more compact and effective 
representations via redundancy elimination. 

The GLINs’ performances excel several other state-of-the-art 
deep learning based classifiers (CNN, Linear-NN), with an F1 gain 
of no less than 5.59%. The GLINs are developed on the basis of a 
general GNN architecture, and thus inherit most, if not all, of the 
properties of a GNN framework. They are able to utilize in the label 
prediction process node-level relational properties, which other classi-
fiers such as CNN and Linear-NN usually fail to capture. Note that we 
evaluate 2 types of CNN models, one that performs label inference with 
nodes’ initial vector representations (CNN-Local). As shown in Table 4, 
the results are far from perfect compared to the GLIN. This demonstrates 
the boosting effect of a node’s global awareness towards the node-level 
property prediction. The other model (CNN-Global) fuses all initial 
vectors within a particular time tick, completes prediction with the fused 
vectors and ends up with much more desirable results. However, owing 
to embedding fusion, representations of all nodes corresponding to the 
same time tick become completely indistinguishable. Therefore, CNN- 
Global cannot perform label prediction on the same granularity level 
as the GLINs. 

The GLINs tremendously surpass the unsupervised anomaly 
detectors evaluated in this work (Isolation Forest, One-Class SVM) 
in terms of all evaluation metrics. These two methods produce 
hyperspheres to differentiate rare or abnormal cases from the normal 
ones. They treat each feature vector individually, and hence do not 
consider the temporal and spatial associativity during the model fitting 
process as the GLINs do. Also, the Isolation Forest algorithm operates 
upon existing attributes in the vectors, giving rise to performance 
deterioration due to a lack of in-depth feature analysis. 

5.2. Influence of integrations 

The effect of integrations on models’ performance varies among 
combinations of different message aggregation techniques and 

integration schemes. Overall, the co-existence of the mean and max 
pooling operations tends to enhance a model’s classification accuracy 
and precision to the greatest extent, while no general patterns are 
observed in recall. This suggests the positive influence of global message 
complexity on a model’s functionality, which should be elaborated on in 
future study. 

As for individual pooling schemes, GCN benefits greatly more from 
the max pooling method while GAT coordinates better with mean 
pooling. This presumably arises from the differences in the adjacency 
manipulation executed in the original frameworks. For instance, GCN’s 
indiscrimination in message aggregation smoothens the prominent 
characters each node holds. Thus an complemental stress on these 
characters, which the max pooling operation offers, may offset the 
negative smoothing impact attributed to the original GCN. The same 
principle may apply to GAT as well, while the situation is simply the 
opposite. GAT absorbs a lot of individuality during message passing via 
weight assignment, in the meantime impairing the generality a system 
exhibits. This can be compensated via the application of mean pooling. 

The effect of concatenation and fusion on the original models also 
varies. Concatenation leads to a boost in GCN’s performance while 
fusion ameliorates GAT’s detection accuracy. This actually corresponds 
to the influence of max pooling to a GCN model and the effect of mean 
pooling to a GAT framework, respectively. Concatenation preserves all 
relevant properties while fusion suppresses the prominence, supple-
menting what is lacking attention in the original methodologies. 

5.3. Sensitivity against anomalies 

Test results yielded from the Cross-Neg dataset suggest that the 
GLIN series are capable of differentiating anomalous activities at a 
rather early stage, indicating a much prompter response to potentially 
malicious behaviours than their counterpart approaches. Exemplified 
with GCN, one can easily infer that the proposed GLIN method excels the 
regular GCN in every adopted metric by 20–30%. This all-around 
improvement demonstrates the effectiveness of global integration over 
peripheral learning, contributing to a higher level of unambiguity in the 
definition of normal activities. 

Fig. 7. GLIN Deployment.  
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5.4. Limitations 

The integration process attaches the same global message block to 
the embeddings of nodes in the same batch. This shortens the distance 
among these representations, in the meantime leading to potential over- 
smoothing issues, raising difficulties in distinguishing abnormal devices 
in the same time tick. Max pooling, in particular, directly appends the 
same global expressions to the end of the original vectors. This drasti-
cally expands the vector’s dimension as well as the similarity among 
different nodes to an extent determined by the number of pooling 
mechanisms involved. Relevant details should be investigated in future 
work. 

5.5. Deployment strategies 

With security gateways and flow auditing systems equipped in real 
ICS networks, the GLIN can be deployed in these security devices and 
run as a cooperative function in coordination with existing operations 
(See Fig. 7). Specifically, the GLIN can work as a separate plugin looped 
by the primary protocol stack whenever necessary, or alternatively, it 
can be initiated as a continuous thread, serving as part of the main Deep 
Packet Inspection (DPI) process. In the former scenario, received packets 
are accumulated and stored before being transmitted to the GLIN upon 
call, while the latter requires the GLIN to perform analysis on real-time 
data flow. 

6. Conclusion 

In this work, we investigate the influence of global expressions on the 
performance of GNN models dedicated to device anomaly detection in 
ICSs. We present the GLIN, a framework that achieves node-level 
anomaly detection via global and local message integration. The GLIN 
comprises a preprocessor, an encoder, a pooling module, an integration 
module, and a decoder. The model is unique in that it achieves node- 
level state inference via global incorporation. We evaluate the GLIN 
against multiple existing frameworks using various popular metrics and 
results have proven GLIN’s superiority over the current baselines, with 
an F1 gain of no less than 5.59%. Finally, we present possible application 
and deployment schemes of the GLIN in real ICSs. Our future work in-
volves investigating how the GLIN should be implemented in diverse ICS 
environment, and studying the possibility of enhancing its runtime ef-
ficiency in order to adapt to real-time applications. 
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